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Abstract

This project aims to develop an AI-driven image synthesis tool using deep learning techniques for data 
augmentation in computer vision tasks. Traditional data augmentation methods often lack diversity and fail 
to generate realistic variations. The proposed tool leverages generative adversarial networks (GANs) to 
create high-quality synthetic images that closely resemble real-world data. The project involves steps such 
as dataset preparation, GAN model training, image synthesis, data augmentation, and model training and 
evaluation. By integrating the generated synthetic images with the original dataset, the tool enhances data 
diversity, improves model generalization, reduces data collection efforts, and adapts to various computer 
vision tasks. This project offers the potential to boost the performance and accuracy of computer vision 
models, even for individual developers working with Python.

Keywords: AI-driven image synthesis, data augmentation, deep learning, computer vision, generative 
adversarial networks (GANs), Python.

How it works

The AI-driven image synthesis data augmentation tool works through a series of steps to generate 
synthetic images for data augmentation:

• Dataset Preparation: A representative dataset is collected for the target computer vision task, such
as image classification or object detection. The dataset is annotated with relevant labels or
annotations to facilitate model training.

• Image Synthesis: The trained GAN model is utilized to generate synthetic images that mimic the
characteristics of the original dataset. By providing input noise to the generator network, it generates
new images based on the learned patterns and features from the training dataset. The synthesis
process can be controlled by specifying desired variations, such as lighting conditions, occlusions, or
backgrounds.

• Data Augmentation: The generated synthetic images are integrated with the original dataset to
create an augmented dataset. This augmented dataset contains a combination of real and synthetic
images, increasing the diversity and variability of the training data. Randomization techniques are
applied during training to avoid overfitting, such as randomly selecting augmented images and
shuffling their order.

• Model Training and Evaluation: The augmented dataset is used to train existing computer vision
models, such as Convolutional Neural Networks (CNNs), using popular machine learning
frameworks like TensorFlow or PyTorch. The models are trained on the augmented dataset to learn
from the expanded and diverse data. The performance of the trained models is evaluated on separate
test datasets, comparing the results with models trained solely on the original dataset.

• Benefits and Impact:

1. - Increased data diversity

2. - Enhanced model generalization

3. - Reduced data collection efforts

4. - Adaptability to various computer vision tasks



At 2023.06.15, the project documentation is under development and will continue soon.
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Code Explanation |  GAN Train

The code consists of two main functions: train and save_generated_images.

The train function begins by loading the MNIST dataset using mnist.load_data(). The images are 
normalized to the range [-1, 1] by dividing by 127.5 and subtracting 1.0. This normalization is 
performed to improve the training process.

The latent_dim variable represents the dimensionality of the generator's input noise. In this case, 
it is set to 100.

Next, the generator, discriminator, and GAN models are created using the build_generator, 
build_discriminator, and build_gan functions, respectively. The generator takes the latent_dim as 
input, while the discriminator takes the shape of the input images (excluding the batch size).

Both the discriminator and GAN models are compiled with the binary cross-entropy loss and the 
Adam optimizer. The learning rate is set to 0.0002, and the beta parameter (beta_1) is set to 0.5.

Training loop begins, iterating over the specified number of epochs. For each epoch, a random 
batch of real images is selected from the training dataset. Additionally, a batch of noise vectors is 
generated to feed into the generator. The generator produces fake images based on this noise.
The discriminator is trained twice in each epoch: once with the real images and once with the fake 
images. The discriminator loss is calculated as the average of the losses from real and fake 
images. Generator is then trained by generating another batch of noise vectors and using them to 
produce fake images. The GAN model is trained by passing the generated noise and target labels 
(ones) to the GAN model. The generator tries to fool the discriminator into classifying the fake 
images as real.

Usage

To use this code, you need to have the model.py file in the same directory, which should contain 
the definitions for the build_generator, build_discriminator, and build_gan functions.

You can call the train function with the desired number of epochs, batch size, and save interval. 
The training process will begin, and the discriminator and generator losses will be printed after 
each epoch. Generated images will be saved every save_interval epochs.

train(epochs=100, batch_size=128, save_interval=10)

This code is a simplified implementation and may not produce high-quality results. Further 
improvements and optimizations can be made based on specific use cases.

f'Epoch {epoch+1}/{epochs} - D loss: {d_loss:.4f} - G loss: {g_loss:.4f}'

Future and next plans
Progressive Growing of GANs: Implement the progressive growing technique for GANs, 
where the generator and discriminator are gradually trained on images of increasing resolution. 
This approach can lead to generating higher-resolution and more realistic images.

Training on Larger Datasets: Training the GAN model on larger and more diverse datasets 
beyond MNIST. Datasets such as CIFAR-10, CelebA, or ImageNet can provide a more 
challenging and realistic training environment, leading to improved image generation 
capabilities.

• Evaluation Metrics
• Hyperparameter Optimization
• Conditional GANs
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